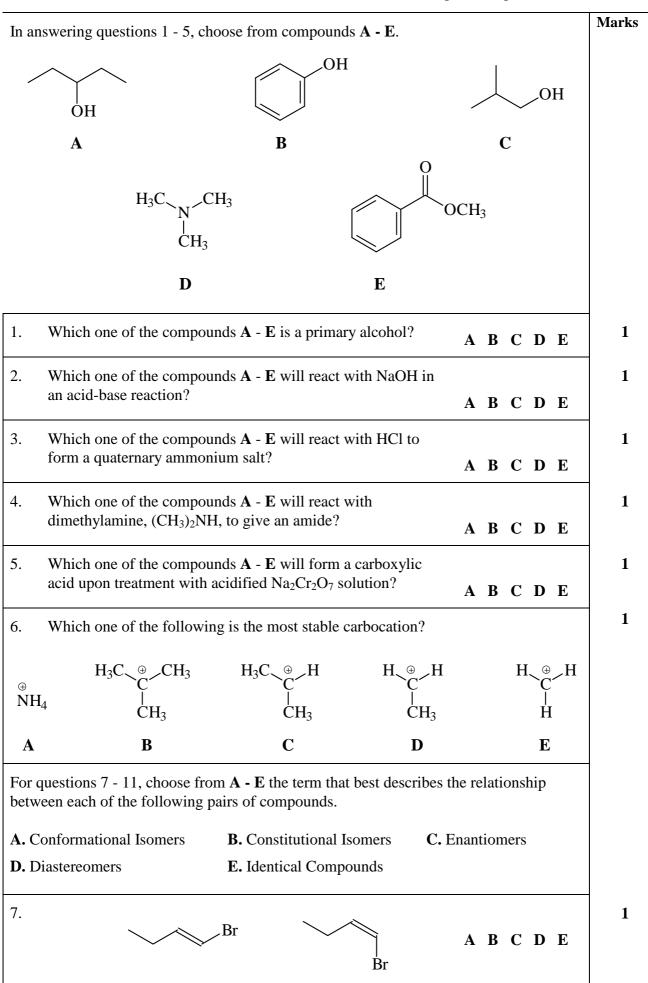
CHEM1002 Example Multiple Choice Questions

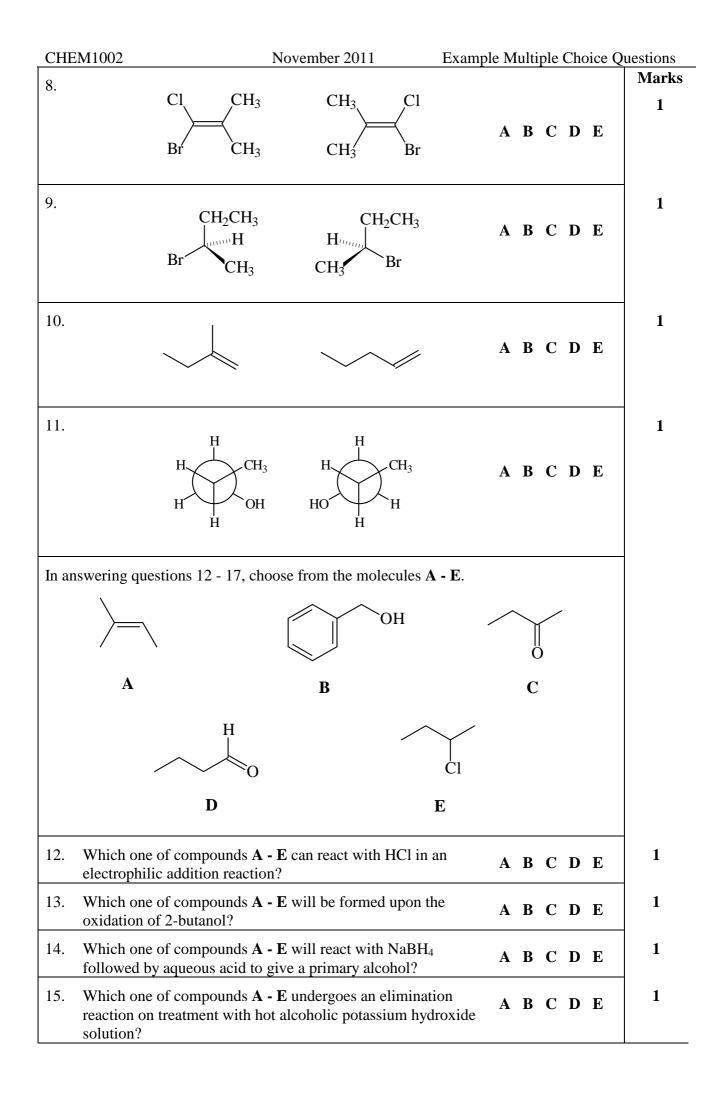
The following multiple choice questions are provided to *illustrate* the type of questions used in this section of the paper and to provide you with extra practice.

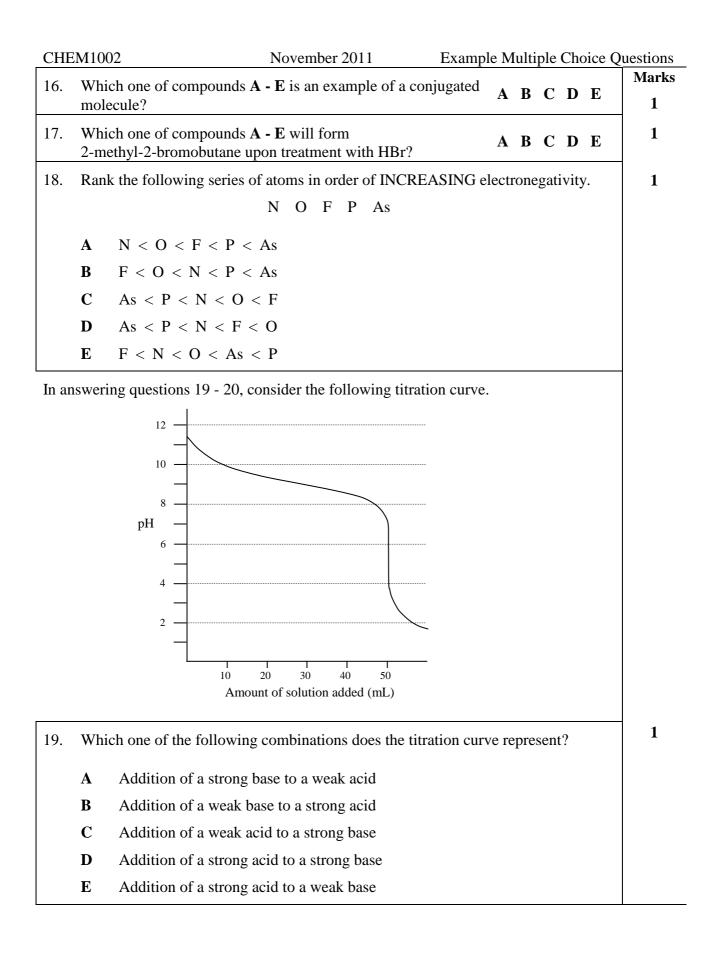
It is *not* a sample quiz. The questions in the paper will be in the style of these questions but may well cover different topics.

In the exam, the answer should be indicated by clearly circling the letter next to the choice you make **and** by filling in the corresponding box on the computer-marked sheet provided. The marks for each correct answer are given beside each question.

<u>Instructions for use of the computer sheet</u>. Draw a **thick** line through the **centre** and crossing both edges of each box selected, as in this example.




Use a **dark** lead pencil so that you can use an eraser if you make an error. Errors made in ink cannot be corrected – you will need to ask the examination supervisor for another sheet. Boxes with faint or incomplete lines or not completed in the prescribed manner may not be read. Be sure to complete the SID and name sections of the sheet.


Your answer as recorded on the sheet will be used in the event of any ambiguity.

There is only one correct choice for each question.

Negative marks will not be awarded for any question.

CHEM1	1002	November 2011	Example Multiple Choice	e Questions
20. W	That is the value of the particular the particular the particular terms of ter	K_{a} that can be obtained from the obtained from the transformation of t	om this titration curve?	Marks 1
Α	11.3			
В	10.0			
С	9.3			
D	5.3			
Ε	1.8			
21. Fo	or a triprotic acid, such a	s phosphoric acid, H ₃ PO ₄	,	1
Α	$K_{a1} > K_{a2} > K_{a3}$			
В	$K_{a3} > K_{a2} > K_{a1}$			
С	$K_{a1} > K_{a2} = K_{a3}$			
D	$K_{\mathrm{a}1} = K_{\mathrm{a}2} > K_{\mathrm{a}3}$			
Ε	$K_{a1} = K_{a2} = K_{a3}$			
	Thich of the following states or rect?	• A B C C Temperature	hase diagram below is/are	1
2.	Point D lies at the critic	_	sition from solid to liquid. ibrium.	

D 1 and 2**E** 1 and 3

CHE	EM100	November 2011 Example Multiple Choice 0	Questions
23.	Whic	ch intermolecular forces are present in phenol, C ₆ H ₅ OH(s)?	Marks 1
	Α	London dispersion only	
	B	Dipole-dipole only	
	С	Hydrogen-bonding only	
	D	London dispersion and dipole-dipole	
	Ε	London dispersion, dipole-dipole and hydrogen bonding	
24.	A cat	talyst speeds up a chemical reaction by	1
	Α	changing the stoichiometry.	
	В	increasing the activation energy.	
	С	providing an alternative reaction mechanism of lower activation energy.	
	D	shifting the equilibrium towards the side of the product(s).	
	Ε	increasing the reaction enthalpy.	
25.	Whic	ch of the following gases can be liquefied at 25 °C?	1
		Gas Critical point CH_3Cl 144 °C, 66 atm SO_2 158 °C, 78 atm CH_4 -82 °C, 46 atm	
	Α	SO ₂ only	
	В	CH ₄ only	
	С	CH ₃ Cl and SO ₂	
	D	all of them	
	Ε	none of them	
26.		lid has a very high melting point, is very hard, and its liquid is non- ucting. The compound is	1
	Α	a molecular solid.	
	B	a metallic solid.	
	С	a covalent network solid.	
	D	an ionic solid.	
	Ε	an amorphous solid.	

CHE	EM100	2 November 2011 Example Multiple Choice Q	uestions
27.	Whe	n one mole of ice melts to liquid at 0 °C,	Marks
	A	the entropy of the system decreases.	1
	В	the entropy of the system remains the same.	
	С	the entropy of the system increases.	
	D	the order of the system increases.	
	Ε	None of the above	
28.	The	entropy of a chemical system will usually increase when	1
	A	a molecule is broken down into two or more smaller fragments.	
	B	a reaction occurs that results in an increase in the moles of gas.	
	С	a solid changes to a liquid.	
	D	a liquid changes into a gas.	
	E	All of the above	
29.		nge the common unit cells of metals from the least dense packing to the most e packing.	1
	Α	body-centred cubic < face-centred cubic < simple cubic	
	B	body-centred cubic < simple cubic < face-centred cubic	
	С	face-centred cubic < simple cubic < body-centred cubic	
	D	simple cubic < body-centred cubic < face-centred cubic	
	E	simple cubic < face-centred cubic < body-centred cubic	
30.	How	many atoms are there in the face-centred cubic unit cell of iron?	1
	A	# atoms = $\frac{1}{8}(8) = 1$	
	В	# atoms = $1 + \frac{1}{8}(8) = 2$	
	С	# atoms = $\frac{1}{2}(6) = 3$	
	D	# atoms = $\frac{1}{2}(6) + \frac{1}{8}(8) = 4$	
	Ε	# atoms = $1 + \frac{1}{2}(6) + \frac{1}{8}(8) = 5$	

31.The normal boiling point of a liquid isMarks1Athe only temperature at which there can be equilibrium between the liquid and gas states.IBthe temperature above which the substance cannot exist as a liquid regardless of the pressure.Cthe temperature at which the entropy of the liquid is equal to zero.Dthe temperature at which the vapour pressure of the liquid equals the ambient atmospheric pressure.I2.What is the geometry of the $[Cr(OH_2)_0]^{3+}$ ion?132.What is the geometry of the $[Cr(OH_2)_0]^{3+}$ ion?1AtetrahedralIBtrigonal bipyramidalICsquare planarIDoctahedralIElinear33.What is the ground state electronic configuration of Fe ³⁺ ?1A $[Ar] 3s^2 3p^6$ IB $[Ar] 4s^3 3d^4$ IC $[Ar] 4s^2 3d^4$ IC $[Ar] 4s^3 3d^5$ I34.Which of the following species exist as isomers? $[Co(OH_2)_6]a^{1+}$, $[CdI_4]a^{2-}$ 1A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]a^{2-}$ 1B $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]a^{2+}$ 1C $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]a^{2+}$ 1	CHE	EM100	2 November 2011 Example Multiple Choice Q	uestions
Athe only temperature at which there can be equilibrium between the liquid and gas states.Bthe temperature above which the substance cannot exist as a liquid regardless of the pressure.Cthe temperature at which the entropy of the liquid is equal to zero.Dthe temperature at which the vapour pressure of the liquid equals the ambient atmospheric pressure.Ethe temperature at which the vapour pressure of the liquid equals 1 atm.32.What is the geometry of the $[Cr(OH_2)_0]^{3+}$ ion?AtetrahedralBtrigonal bipyramidal CCsquare planarDoctahedralElinear33.What is the ground state electronic configuration of Fe ³⁺ ?A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^3 3d^4$ C $[Ar] 4s^0 3d^8 4p^2$ E $[Ar] 4s^0 3d^5$ 34.Which of the following species exist as isomers? $[Co(NH_3)_0]^{3+}$, $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_0]Cl_3$ B $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_0]Cl_3$ B $[PtCl_2(NH_3)_2]$ onlyC $[CdI_4]^{2-}$ onlyD $[Co(NH_3)_0]^{3+}$ and $[Co(OH_2)_0]^{2+}$.	31.	The	normal boiling point of a liquid is	Marks
of the pressure. C the temperature at which the entropy of the liquid is equal to zero. D the temperature at which the vapour pressure of the liquid equals the ambient atmospheric pressure. E the temperature at which the vapour pressure of the liquid equals 1 atm. 32. What is the geometry of the $[Cr(OH_2)_6]^{3+}$ ion? A tetrahedral B trigonal bipyramidal C square planar D octahedral E linear 33. What is the ground state electronic configuration of Fe^{3+} ? A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^5$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]^{2+}$		A		1
Dthe temperature at which the vapour pressure of the liquid equals the ambient atmospheric pressure.Ethe temperature at which the vapour pressure of the liquid equals 1 atm.32.What is the geometry of the $[Cr(OH_2)_6]^{3+}$ ion?1Atetrahedral Btrigonal bipyramidal C1Csquare planar Doctahedral E1Birigonal bipyramidal Csquare planar C133.What is the ground state electronic configuration of Fe ³⁺ ?1A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^2 3d^4$ C1C $[Ar] 4s^0 3d^8$ 4 p^2 E1E $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B1B $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]^{2+}$		В		
atmospheric pressure.IIIIII32.What is the geometry of the $[Cr(OH_2)_6]^{3+}$ ion?1AtetrahedralBtrigonal bipyramidalCsquare planarDoctahedralElinear33.What is the ground state electronic configuration of Fe ³⁺ ?A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^3$ D $[Ar] 4s^0 3d^6$ 34.Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ onlyC $[CdI_4]^{2-}$ onlyD $[Co(OH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		С	the temperature at which the entropy of the liquid is equal to zero.	
132. What is the geometry of the $[Cr(OH_2)_6]^{3+}$ ion?AtetrahedralBtrigonal bipyramidalCsquare planarDoctahedralElinear33. What is the ground state electronic configuration of Fe ³⁺ ?A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^3$ D $[Ar] 4s^2 3d^3$ D $[Ar] 4s^0 3d^8 4p^2$ E $[Ar] 4s^0 3d^5$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ onlyC $[CdI_4]^{2-}$ onlyD $[Co(OH_2)_6]^{2+}$		D		
32. What is the geometry of the [Cr(OH ₂) ₆] ⁻ ion? A tetrahedral B trigonal bipyramidal C square planar D octahedral E linear 33. What is the ground state electronic configuration of Fe ³⁺ ? A [Ar] $3s^2 3p^6$ B [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^3$ D [Ar] $4s^0 3d^8 4p^2$ E [Ar] $4s^0 3d^8$ 34. Which of the following species exist as isomers? [Co(NH ₃) ₆] ³⁺ , [PtCl ₂ (NH ₃) ₂], [Co(OH ₂) ₆]Cl ₃ , [Co(OH ₂) ₆] ²⁺ , [CdI ₄] ²⁻ A [PtCl ₂ (NH ₃) ₂] and [Co(OH ₂) ₆]Cl ₃ B [PtCl ₂ (NH ₃) ₂] only C [CdI ₄] ²⁻ only D [Co(NH ₃) ₆] ³⁺ and [Co(OH ₂) ₆] ²⁺		Ε	the temperature at which the vapour pressure of the liquid equals 1 atm.	
B trigonal bipyramidal C square planar D octahedral E linear 33. What is the ground state electronic configuration of Fe ³⁺ ? A [Ar] $3s^2 3p^6$ B [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^4$ C [Ar] $4s^0 3d^8 4p^2$ E [Ar] $4s^0 3d^5$ 34. Which of the following species exist as isomers? [Co(NH ₃) ₆] ³⁺ , [PtCl ₂ (NH ₃) ₂], [Co(OH ₂) ₆]Cl ₃ , [Co(OH ₂) ₆] ²⁺ , [CdL ₄] ²⁻ A [PtCl ₂ (NH ₃) ₂] and [Co(OH ₂) ₆]Cl ₃ B [PtCl ₂ (NH ₃) ₂] only C [CdL ₄] ²⁻ only D [Co(NH ₃) ₆] ³⁺ and [Co(OH ₂) ₆] ²⁺	32.	Wha	t is the geometry of the $[Cr(OH_2)_6]^{3+}$ ion?	1
Csquare planarDoctahedralElinear33. What is the ground state electronic configuration of Fe ³⁺ ?1A $[Ar] 3s^2 3p^6$ B $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^3$ D $[Ar] 4s^0 3d^8 4p^2$ E $[Ar] 4s^0 3d^5$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ onlyC $[CdI_4]^{2-}$ onlyD $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		Α	tetrahedral	
D octahedral E linear 33. What is the ground state electronic configuration of Fe ³⁺ ? A [Ar] $3s^2 3p^6$ B [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^3$ D [Ar] $4s^0 3d^8 4p^2$ E [Ar] $4s^0 3d^5$ 34. Which of the following species exist as isomers? [Co(NH_3)_6]^{3+}, [PtCl_2(NH_3)_2], [Co(OH_2)_6]Cl_3, [Co(OH_2)_6]^{2+}, [CdI_4]^{2-} A [PtCl_2(NH_3)_2] and [Co(OH_2)_6]Cl_3 B [PtCl_2(NH_3)_2] only C [CdI_4]^2 only D [Co(NH_3)_6]^{3+} and [Co(OH_2)_6]^{2+}		B	trigonal bipyramidal	
E linear 33. What is the ground state electronic configuration of Fe ³⁺ ? 1 A [Ar] $3s^2 3p^6$ 1 B [Ar] $4s^2 3d^4$ 1 C [Ar] $4s^2 3d^3$ 1 D [Ar] $4s^0 3d^8 4p^2$ 1 E [Ar] $4s^0 3d^5$ 1 34. Which of the following species exist as isomers? 1 [Co(NH ₃) ₆] ³⁺ , [PtCl ₂ (NH ₃) ₂], [Co(OH ₂) ₆]Cl ₃ , [Co(OH ₂) ₆] ²⁺ , [CdI ₄] ²⁻ 1 A [PtCl ₂ (NH ₃) ₂] and [Co(OH ₂) ₆]Cl ₃ B B [PtCl ₂ (NH ₃) ₂] only C C [CdI ₄] ²⁻ only D D [Co(NH ₃) ₆] ³⁺ and [Co(OH ₂) ₆] ²⁺		С	square planar	
33. What is the ground state electronic configuration of Fe ³⁺ ? 1 A [Ar] $3s^2 3p^6$ B [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^3$ D [Ar] $4s^0 3d^8 4p^2$ E [Ar] $4s^0 3d^5$ 34. Which of the following species exist as isomers? 1 [Co(NH_3)_6]^{3+}, [PtCl_2(NH_3)_2], [Co(OH_2)_6]Cl_3, [Co(OH_2)_6]^{2+}, [CdI_4]^{2-} A [PtCl_2(NH_3)_2] and [Co(OH_2)_6]Cl_3 B [PtCl_2(NH_3)_2] only C [CdI_4]^{2-} only D [Co(NH_3)_6]^{3+} and [Co(OH_2)_6]^{2+}		D	octahedral	
A [Ar] $3s^2 3p^6$ B [Ar] $4s^2 3d^4$ C [Ar] $4s^2 3d^3$ D [Ar] $4s^0 3d^8 4p^2$ E [Ar] $4s^0 3d^5$ 34. Which of the following species exist as isomers? [Co(NH ₃) ₆] ³⁺ , [PtCl ₂ (NH ₃) ₂], [Co(OH ₂) ₆]Cl ₃ , [Co(OH ₂) ₆] ²⁺ , [CdI ₄] ²⁻ A [PtCl ₂ (NH ₃) ₂] and [Co(OH ₂) ₆]Cl ₃ B [PtCl ₂ (NH ₃) ₂] only C [CdI ₄] ²⁻ only D [Co(NH ₃) ₆] ³⁺ and [Co(OH ₂) ₆] ²⁺		Ε	linear	
B $[Ar] 4s^2 3d^4$ C $[Ar] 4s^2 3d^3$ D $[Ar] 4s^0 3d^8 4p^2$ E $[Ar] 4s^0 3d^5$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ only C $[CdI_4]^{2-}$ only D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$	33.	Wha	t is the ground state electronic configuration of Fe ³⁺ ?	1
$\begin{array}{c cccc} C & [Ar] 4s^2 3d^3 \\ D & [Ar] 4s^0 3d^8 4p^2 \\ E & [Ar] 4s^0 3d^5 \end{array}$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}, \ [PtCl_2(NH_3)_2], \ [Co(OH_2)_6]Cl_3, \ [Co(OH_2)_6]^{2+}, \ [CdI_4]^{2-} \\ A & [PtCl_2(NH_3)_2] \ and \ [Co(OH_2)_6]Cl_3 \\ B & [PtCl_2(NH_3)_2] \ only \\ C & [CdI_4]^{2-} \ only \\ D & [Co(NH_3)_6]^{3+} \ and \ [Co(OH_2)_6]^{2+} \end{array}$		Α	[Ar] $3s^2 3p^6$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		В	$[Ar] 4s^2 3d^4$	
E $[Ar] 4s^0 3d^5$ 34. Which of the following species exist as isomers? $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ B $[PtCl_2(NH_3)_2]$ only C $[CdI_4]^{2-}$ only D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		С	$[Ar] 4s^2 3d^3$	
34. Which of the following species exist as isomers? 1 $[Co(NH_3)_6]^{3+}$, $[PtCl_2(NH_3)_2]$, $[Co(OH_2)_6]Cl_3$, $[Co(OH_2)_6]^{2+}$, $[CdI_4]^{2-}$ 1 A $[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$ 1 B $[PtCl_2(NH_3)_2]$ only 1 C $[CdI_4]^{2-}$ only 1 D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		D	$[Ar] 4s^0 3d^8 4p^2$	
$\begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+}, & [PtCl_2(NH_3)_2], & [Co(OH_2)_6]Cl_3, & [Co(OH_2)_6]^{2+}, & [CdI_4]^{2-} \\ A & [PtCl_2(NH_3)_2] & and & [Co(OH_2)_6]Cl_3 \\ B & [PtCl_2(NH_3)_2] & only \\ C & [CdI_4]^{2-} & only \\ D & [Co(NH_3)_6]^{3+} & and & [Co(OH_2)_6]^{2+} \\ \end{bmatrix}$		Ε	[Ar] $4s^0 3d^5$	
$\begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+}, & [PtCl_2(NH_3)_2], & [Co(OH_2)_6]Cl_3, & [Co(OH_2)_6]^{2+}, & [CdI_4]^{2-} \\ A & [PtCl_2(NH_3)_2] & and & [Co(OH_2)_6]Cl_3 \\ B & [PtCl_2(NH_3)_2] & only \\ C & [CdI_4]^{2-} & only \\ D & [Co(NH_3)_6]^{3+} & and & [Co(OH_2)_6]^{2+} \\ \end{bmatrix}$	34.	Whie	ch of the following species exist as isomers?	1
B $[PtCl_2(NH_3)_2]$ only C $[CdI_4]^{2-}$ only D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		[Co($NH_{3}_{6}]^{3+}$, [PtCl ₂ (NH ₃) ₂], [Co(OH ₂) ₆]Cl ₃ , [Co(OH ₂) ₆] ²⁺ , [CdI ₄] ²⁻	
C $[CdI_4]^{2-}$ only D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		A	$[PtCl_2(NH_3)_2]$ and $[Co(OH_2)_6]Cl_3$	
D $[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$		В	[PtCl ₂ (NH ₃) ₂] only	
		С	$\left[\mathrm{CdI}_4\right]^{2-}$ only	
E $[Co(OH_2)_6]Cl_3$ and $[Co(OH_2)_6]^{2+}$		D	$[Co(NH_3)_6]^{3+}$ and $[Co(OH_2)_6]^{2+}$	
		Ε	$[Co(OH_2)_6]Cl_3$ and $[Co(OH_2)_6]^{2+}$	

Answers

Question	1	2	3	4	5	6	7	8	9	10
Answer	С	В	D	Е	С	В	D	Е	C	В
Question	11	12	13	14	15	16	17	18	19	20
Answer	А	Α	С	D	Е	В	Α	С	Е	C
Question	21	22	23	24	25	26	27	28	29	30
Answer	А	Е	Е	С	С	С	С	Е	D	D
Question	31	32	33	34						

Question	31	32	33	34
Answer	Е	D	Е	Α